Multivariate generalized Laplace distribution and related random fields
نویسندگان
چکیده
Multivariate Laplace distribution is an important stochastic model that accounts for asymmetry and heavier than Gaussian tails, while still ensuring the existence of the second moments. A Lévy process based on this multivariate infinitely divisible distribution is known as Laplace motion, and its marginal distributions are multivariate generalized Laplace laws. We review their basic properties and discuss a construction of a class of moving average vector processes driven by multivariate Laplace motion. These stochastic models extend to vector fields, which are multivariate both in the argument and the value. They provide an attractive alternative to those based on Gaussianity, in presence of asymmetry and heavy tails in empirical data. An example from engineering shows modeling potential of this construction. © 2012 Elsevier Inc. All rights reserved.
منابع مشابه
Multivariate Generalized Laplace Distributions and Related Random Fields
Multivariate Laplace distribution is an important stochastic model that accounts for asymmetry and heavier than Gaussian tails often observed in practical data, while still ensuring the existence of the second moments. A Lévy process based on this multivariate infinitely divisible distribution is known as Laplace motion, and its marginal distributions are multivariate generalized Laplace laws. ...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملAsymmetric Univariate and Bivariate Laplace and Generalized Laplace Distributions
Alternative specifications of univariate asymmetric Laplace models are described and investigated. A more general mixture model is then introduced. Bivariate extensions of these models are discussed in some detail, with particular emphasis on associated parameter estimation strategies. Multivariate versions of the models are briefly introduced.
متن کاملThe Estimation of Laplace Random Vectors in AWGN and the Generalized Incomplete Gamma Function
This paper develops and compares the MAP and MMSE estimators for spherically-contoured multivariate Laplace random vectors in additive white Gaussian noise. The MMSE estimator is expressed in closed-form using the generalized incomplete gamma function. We also find a computationally efficient yet accurate approximation for the MMSE estimator. In addition, this paper develops an expression for t...
متن کاملBayesian Prediction Intervals under Bivariate Truncated Generalized Cauchy Distribution
Ateya and Madhagi (2011) introduced a multivariate form of truncated generalized Cauchy distribution (TGCD), which introduced by Ateya and Al-Hussaini (2007). The multivariate version of (TGCD) is denoted by (MVTGCD). Among the features of this form are that subvectors and conditional subvectors of random vectors, distributed according to this distribution, have the same form of distribution ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Multivariate Analysis
دوره 113 شماره
صفحات -
تاریخ انتشار 2013